jueves, 3 de septiembre de 2015

Historia de la geometría analítica

Existe una cierta controversia sobre la verdadera paternidad de este método. Lo único cierto es que se publica por primera vez en 1637 como "Geometría analítica", apéndice al Discurso del método, de Descartes, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Aunque Omar Khayyam ya en el siglo XI utilizara un método muy parecido para determinar ciertas intersecciones entre curvas, es imposible que alguno de los citados matemáticos franceses tuvieran acceso a su obra.
El nombre de geometría analítica corrió parejo al de geometría cartesiana, y ambos son indistinguibles. Hoy en día, paradójicamente, se prefiere denominar geometría cartesiana al apéndice del Discurso del método, mientras que se entiende que geometría analítica comprende no sólo a la geometría cartesiana (en el sentido que acabamos de citar, es decir, al texto apéndice del Discurso del método), sino también todo el desarrollo posterior de la geometría que se base en la construcción de ejes coordenados y la descripción de las figuras mediante funciones —algebraicas o no— hasta la aparición de la geometría diferencial de Gauss (decimos "paradójicamente" porque se usa precisamente el término "geometría cartesiana" para aquello que el propio Descartes bautizó como "geometría analítica"). El problema es que durante ese periodo no existe una diferencia clara entre geometría analítica y análisis matemático —esta falta de diferencia se debe precisamente a la identificación hecha en la época entre los conceptos defunción y curva—, por lo que resulta a veces muy difícil intentar determinar si el estudio que se está realizando corresponde a una u otra rama.
La geometría diferencial de curvas sí que permite un estudio mediante un sistema de coordenadas, ya sea en el plano o en el espacio tridimensional. Pero en el estudio de las superficies, en general, aparecen serios obstáculos. Gauss salva dichos obstáculos creando la geometría diferencial, y marcando con ello el fin de la geometría analítica como disciplina. Es con el desarrollo de la geometría algebraica cuando se puede certificar totalmente la superación de la geometría analítica.
Es de puntualizar que la denominación de analítica dada a esta forma de estudiar la geometría provocó que la anterior manera de estudiarla (es decir, la manera axiomático-deductiva, sin la intervención de coordenadas) se terminara denominando, por oposición, geometría sintética, debido a la dualidad análisis-síntesis.

Recapitulando un poco sobre el estudio de la geometria

La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Su desarrollo histórico comienza con la geometría cartesiana, continúa con la aparición de lageometría diferencial de Carl Friedrich Gauss y más tarde con el desarrollo de la geometría algebraica. Actualmente la geometría analítica tiene múltiples aplicaciones más allá de las matemáticas y la ingeniería, pues forma parte ahora del trabajo de administradores para la planeación de estrategias y logística en la toma de decisiones.
Las dos cuestiones fundamentales de la geometría analítica son:
  1. Dado la curva en un sistema de coordenadas, obtener su ecuación.
  2. Dada la ecuación indeterminadapolinomio, o función determinar en un sistema de coordenadas la gráfica o curva algebraica de los puntos que verifican dicha ecuación.
Lo novedoso de la geometría analítica es que representa las figuras geométricas mediante fórmulas del tipo f(x)=y, donde f es unafunción u otro tipo de expresión matemática: las rectas se expresan como ecuaciones polinómicas de grado 1 (por ejemplo, 2x+6y=0), las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (la circunferencia x^2 + y^2 = 4, la hipérbola xy = 1), etc.

Área de un polígono en función de las coordenadas de sus vértices

Área: la expresión de un polígono ocupa una determinada superficie. Llamamos área o superficie de un polígono a la región interior del plano delimitada por sus lados.


El uso de los determinantes es muy práctico, ya que su aplicación es la misma en el cálculo del área de un polígono de más de tres lados. Basta con aumentar el número de renglones hasta hacerlo coincidir con el número de lados más la repetición del primer renglón como el último del determinante.





Angulos de dos rectas

El ángulo entre dos rectas 
r
 y 
s
 del espacio es el menor angulo entre las rectas que se obtienen al proyectar 
r
 y 
s
 en un mismo plano paralelo a ambas rectas. Las rectas se proyectan en un mismo plano porque, en general, no tienen porque encontrarse en un mismo plano ( no tienen porque ser coplanarias ).
Dos rectas en el plano forman dos ángulos, uno menor, llamemoslos, por ejemplo, 
\alpha 
, y otro mayor ( o igual ), que seria el suplementario de 
\alpha 
,   
180 - \alpha 
.









Rectas paralelas y perpendiculares

Las rectas paralelas son dos o más rectas en un plano que nunca se intersectan. Hay muchos ejemplos de rectas paralelas como los lados opuestos del marco rectangular de una pintura y los estantes de un librero.



Las rectas perpendiculares son dos o más rectas que se intersectan formando un ángulo de 90 grados, como las dos rectas dibujadas en la gráfica. Los ángulos de 90 grados también se llaman ángulos rectos.

Inclinación y pendiente de una recta

La inclinación de una recta es el angulo que forma el eje OX positivo con dicha recta y su pendiente es la tangente trigonométrica de su inclinación.


Distancia entre dos puntos



 La distancia entre los puntos P1 P2,sean P1 (x1, y1) y P2 (x2, y2) dos puntos en el plano es:



por ejemplo,  la distancia entre los puntos P1(7, 5) y P2(4, 1)


Sistema de coordenadas rectangulares

El sistema de coordenadas rectangulares divide al plano en cuatro  cuadrantes por medio de dos rectas perpendiculares que se cortan en el punto 0. La horizontal X' 0X se denomina eje x, la vertical Y' 0Y, eje y, y ambas constituyen dos ejes de coordenadas. El punto O se conoce como origen del sistema.

La distancia de un punto al eje y se conoce como abscisa y, mientras que la distancia de un punto a x es la ordenada. Ambas constituyen las coordenadas del punto en cuestión y se representan por el símbolo (x,y)